MECHANICAL ENGINEERING DRAWING

L T P Hrs./Week - - 8

RATIONALE

Diploma holders in Aeronautical And Maintenance Engineering are required to read and interpret drawings and thereof, it is essential that they have skills of preparing drawings and sketches of various components, tools, jigs and Fixtures. For this purpose, knowledge and skills for preparing drawings of couplings, bearing, bracket, pulleys, pipe joint and I.C. Engine parts are required to be imparted for enabling them to work in the field of Aeronautics. This subject aims at development of drawing competencies in the students aims at development of drawing. Stress should be laid on layout, cleanliness, conceptualization, dimensions and specifications.

Sr.	Theor	ry	Time Practical	Time
No.			(Hrs.)	(Hrs.)
1.	COUPLINGS		2 Sheets	
	1.1	Universal Coupling	10 Hrs.	
	1.2	Oldham's Coupling		
2.	BEARINGS		5 Sheets.	
	2.1	Simple bushed bearing	30 Hrs.	
	2.2	Ball bearing and roller bearing		
	2.3	Plummer block (detailed drawing)		
	2.4	Plummer block (assembled drawing)		
	2.5	Foot step bearing		
3.	BRAC	KET	1 Sheet	
			6 Hrs.	
3.1	Wall	Bracket		
4.	PULLE	EYS	2 Sheets	
			10 Hrs.	
4.1	Fast and loose pulley			
4.2	Stepped and V-Pulley			
5.	PIPE J	IOINT	3 Sheets	
			18 Hrs.	
5.1	Flang	ed pipe joints, right angle bend		
5.2	Hydra	aulic pipe joints, spigot and socket join.		

5.3	Expansion pipe joints.	
5.4	Practice of blue print reading on brackets.	
	Pulleys and pipe joints	
6.	SCREW JACK	1 Sheet
		6 Hrs.
7.	ENGINE PARTS	4 Sheets
	15 Hours	
7.1	Aircraft piston, connecting rod, valve mechanisms	
7.2	Crankshaft and fly wheel assembly	
7.3	Linkages	
8.	DRAWING A AIRCRAFT PARTS	
	20 Hrs.	
8.1	Aerofoil's and NACA	
8.2	Wing ribs and body ribs	
9.	GEARS	2 Sheets
	12 Hrs.	
9.1	Use of different types of gears	
9.2	spur gears with actual profile	
	Of involutes teeth.	
9.3	Conventional representation of	
	Bevel gears, worm and worm wheel.	
9.4	Introduction to bevel gears.	
10.	Practice of reading drawings.	

FLIGHT MECHANICS

L T P Hrs./Week 3 1 1

RATIONALE

An aircraft is capable of flying in spite of its large weight. It has particular shape and becomes airborne beyond certain speeds. In order to appreciate the principles involved in flying it is essential to gain knowledge and skill in the area of mechanics of fluids applied to flying.

Instructors are recommended to design simple suitable tutorial problems and carry out experimental work in the laboratory for better understanding of principles of flight mechanics.

Sr.	Theory	Time	Practical	Time
No.		(Hrs.)		(Hrs.)
1.	Introduction to	6	To study flow having	2
	Fluid mechanics		viscosity effects and to	
			Study pressure distribution on	
			Immersed bodies	
1.1	Fluid properties:			
	Pressure, density, relative			
	Density, specific weight,			
	Viscosity, compressibility,			
	Surface tension			
1.2	Types of fluids and flow		To draw standard atmospheric	2
	Regimes		charts using pressure density	
			Relations for different ranges	
			Of atmosphere.	
1.3	Standard atmosphere			
	And its characteristics,			
	Aero thermodynamics			
2.	Flow kinematics	8		
2.1	Introduction, streamlines,			
	Path lines and streak lines,			
	Acceleration			
2.2	Euler's equation			
2.3	Bernoulli's equation		Draw Bernoulli's	
			Equation terms for	
			Flow through a ventruimeter	
2.4	Votexnmotion			

3. 3.1	fluid Dynamics Momentum equation For flowing fluid	3		
3.2	Non-dimensional Numbers, Reynolds; Number, mach number, coefficients of Lift, drag and moments			
4.	Flight aerodynamics	10	To draw different Kinds of aerofoil	2
4.1	Introduction to 2-D Aerofoils and their Geometrical Parameters; chord, Thickness ratio, Camber, mean camber line, angle of attack; Aerofoil characteristics		And show geometrical parameters and to perform experiment on flow	
4.2	Magnus effect and Vortex theory, lift And drag on inclined Plates		to draw lift-drag curve and pressure distribution for a given set of data	
4.3	lift –drag relation, Types of drag high Drag devices, boundary Layer fence, super stall Load and factors.		8.00.0000	
4.5	Pressure distribution and Centre of pressure			
5.	Aircraft performance	7	Estimate parameters For straight and level flight	
5.1	Straight and level powered Flight			
5.2	Gliding flight			
5.3	Knowledge of effect Of altitude, weight and engine Power on aircraft performance/ Minimum drag, minimum Power, stalling and sinking speeds time Of descent and climb, maximum climb rate.			

6.	High speed flows	6		
6.1	Governing equations and		Study of high speed	2
	Significance of mach number		aerofoil and draw	
			Flow pattern	
6.2	sonic flows, sound barrier and			
	Shock waves: normal and oblique			
6.3	General shape of supersonic			
	Aerofoil's			
7.	Wind tunnels introduction,	3	to draw different	2
	Types, components and use		subsonic wind tunnels	
	& its errors		and associated basic	
			Instrumentations.	
8.	Aircraft stability rolling, pitching,	5		
	Yawing, primary and			
	Secondary controls.			

GENERAL WORKSHOP PRACTICES-III

DETAILED CONTENTS

L

Hrs. /Week -

T

Ρ

8

Advanced Machine shop 45 Hrs. 1. External and internal threading Exercise (10Hrs.) 2. Generation of flat surface on milling machine (10Hrs.) 3. Gear cutting on Milling (15 Hrs.) 4. Exercise on grinding machines (10 Hrs.) **Painting Shop** 35 Hrs. 1. Painting and coating Exercise (10 Hrs.) 2. Spray painting exercise (10Hrs.) 3. Electroplating and buffing a component (15 Hrs.) **Advance Welding Shop** 35 Hrs. 1. Brazing and soldering exercise (8 Hrs.) 2. Spot and seam welding exercise (7 Hrs.) 3. Exercise do TIG/MIG welding (10 Hrs.) 4. Metal pipe cutting, bending and flatting processors (10 Hrs.)

AIRCRAFT RULES AND REGULATIONS-II

L T P

Hrs./Week 3 - 1

Sr.	Theory	Time	Practical	Time
No.		(Hrs.)		(Hrs.)
1.	Stores: Bonded and	6	Visit to stores and	6
	Quarantine stores,		identification of the	
	Storage of various		areas	
	Aeronautical products			
	Including rubber goods,			
	Various fluids.			
2.	Knowledge of various	2		
	Terms such a certificate			
	Of flight release, certificate of			
	Maintenance, approved			
	Certificate.			
3.	Condition under	4		
	Which aircraft is required to be			
	Test flown certificate to be issued			
	By AME for test flight			
4.	Circumstances under	3		
	Which C of A is required			
5.	Ferry flight, MEL CDL	3		
6.	Minimum equipment,			
	Instruments required for			
	Various types of operation			
7.	Modification, concession,	10	to see some of the modes/	3
	Airworthiness		AD s /SB s on the aircraft	
8.	Approval of organization	6		
9.	Documents required	2	To physically check and see	
	To be carried on board		the documents	
10.	Issues of type approval	2		
11.	Registration	2	To physically check and	2
	Authority		identify making.	

BASIC AND DIGITAL ELECTRONICS

L

Hfrs./Week 3

Т

Ρ

2

RATIONALE Diploma holders in Aircraft Maintenance should have knowledge and skills about electronics instruments being used on the aircraft. Hence this subject. **DETAILED CONTENTS** 1. Review of Resistor, inductor, capacitor, and transformer, series and parallel combination of R,L and C 3 Hrs. 2. Concepts of semiconductors, impurities and conduction intrinsic, and extrinsic. PN junction as a diode its characteristics and application as rectifier, temperature dependence of diode characteristics. 7 Hrs. 3. Transistor and its characteristics in different configurations; FET and MOSFET construction and 3 Hrs. characteristics, Biasing of BJT and FET. 4. Concept of amplifier, its effect on gain (in db) input and output, impedances, bandwidth, multi stage amplifiers (Qualitative analysis) 5. Feedback in amplifier, its effect on gain, band width input and output impedances, and noise. Positive feedback and oscillators' (RC LC and crystal type). 6. Operational Amplifiers, its characteristics and application as adder inverter, integrator differentiator, comparator 2 Hrs. 7. Current through RL and RC circuits, transistor as a switch with different loads, definitions of AND, or NOT NAND, NOR XOR gates specifications of TTL and CMOS logic gates. Truth tables and logic expressions, tristate buffer (Only concept) simple problem solving using gates, Boolean's expression. 7 Hrs. 8. Review of number systems and their conversions (Decimal, binary and Hexadecimal) 3 Hrs. 9. Binary arithmetic (1's and 2's complement), half adder, half subtracted, full adder/full subtracter)3Hrs. 10. Latches, flip/Flops (Various types) counters and registers. 3 Hrs. Multiplexer/Dee multiplexer, encoder/Decoder. 11. 2 Hrs. 12. LED/LCD displays, timer chip 555. 2 Hrs. 13. Concept of memories-ROM and RAM. 3 Hrs.

PRACTICALS

1.	p-n Junction diode characteristics and its use as half wave and full wave rectifier	(2 Hrs.)
2.	Common collector and common drain characteristics of NPN transistor.	(2 Hrs.)
3.	Common source and common drain characteristics of FET.	(2 Hrs.)
4.	Single stage transistor amplifier and measurement of current and voltage gains and ba	nd width. (2 Hrs.)
5.	R-C phase shift oscillator and measurement of its output voltage and frequency of osci	
6.	Operational amplifier circuit as adder, sign changer, integrator, diffentiator, comparato	• •
7.	Transistor as switch characteristics with resistance and capacitance loads.	(2 Hrs.)
8.	Verification of truth tables of AND, OR, NOT, XOR, NAND, NOR GATES.	(2 Hrs.)
9.	Implementation of full adder using NAND/NOR gates.	(2 Hrs.)
10.	Implementation of decade counter using JK flip flops and observations of outputs.	(2 Hrs.)
11.	Shift left/right 4 bit shift register realization and observations of outputs.	(2 Hrs.)
12.	Use of multiplexer and demultiplexer for 4 inputs/outputs.	(2 Hrs.)
13.	Operation of 3 to 8 decoder and observation of output.	(2 Hrs.)
14.	Operation of 555 chip as non stable and a stable multivibrator.	(2 Hrs.)
15.	Operation circuit for 7 segments LED display.	(2 Hrs.)
16.	Operational circuit for 7 segments LCD display.	(2 Hrs.)

POWER PLANT CONSTUCTION-PISTON ENGINES

L t P Hrs. /Week 4 - 2

RATIONALE

Power plant is the heart of any system. It is true for various aircraft also. The diploma holders in Aircraft Maintenance must know about the constructional aspects and about various systems of the power plant in the piston engine. Hence this subject has been divided into two sections. First deals with the construction and the other deals with the power plant system. Which will be covered in 4th semester.

Sr.	Theory	Time	Practical	Time
No.		(Hrs.)		(Hrs.)
1.	Familiarization with different types			
	Of engines such as piston Engines and gas			
	Turbine engine	2		
1.1	Internal combustion heat engines			
	Two stroke and four stroke, inline			
	Radial and opposed engines	2		
2.	Definitions and terms used in			
	Piston engine and classification of engine.	2		
3.	Power and efficiency, their			
	Calculations	2		
4.	Fundamentals requirements construction,			
	Classification material and components	25	dismantling of engine	
	And accessories of engine		components and accessories	8
5.	Valve operating mechanism,	8	Carrying out the valve timing,	
	Its parts, valve timing valve		checking the timings,	
	Clearance their checking		valve clearance	
	And adjustments , instruments		and adjustments	8
	And tools used			

6.	Propeller theory, different types of propeller	16	Propeller removal and installat	ion
	Used, their construction,		- Adjusting propeller	
	Operation maintenance and		Governors controls	
	Trouble shooting		-Balancing the propeller	
	- Removal and		- Track checking the propeller	
	Installations procedure			
	- De-icing anti-icing and			
	Synchronization systems			
	 Propeller balancing, tracking 			
	- Propeller governors.			
6.1	Engine Instruments			
7.	Power /thrust boosting	5	Dismantling the super charger	2
	Devices like water injection,		and turbocharger,	
	Super charger, turbocharger,			
	Their construction, operation and			
	Maintenance			
8.	Fuels, oils contamination	2	Taking fuel samples	2
	And prevention			